

NCEP Central Operations
WCOSS Implementation Standards

May 13, 2015

Version 10.0

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 2 -

I. Introduction - 3 -

II. Workflow - 3 -

III. Standard Variables, Formats, and Utilities - 4 -

A. Standard Environment Variables - 4 -

B. File Name Conventions - 5 -

C. Production Utilities - 6 -

D. Date Utilities - 7 -

E. GRIB Utilities - 9 -

IV. Standards - 10 -

A. General Application Standards - 10 -

B. Compiled Code (C or Fortran source) - 11 -

C. Interpreted Code (bash, ksh or perl scripts) - 12 -

V. Dataflow - 13 -

VI. Code Delivery and Vertical Structure - 14 -

A. Source Code Compilation (C or Fortran) - 14 -

B. Directory Structures - 15 -

Appendix A: Workflow Examples - 17 -

Appendix B: Variables and Directory Structure Tables - 22 -

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 3 -

I. Introduction
The reliable production and availability of the National Center for Environmental Prediction's (NCEP)
guidance products plays a critical role in the mission of the National Weather Service to provide
forecasts and warnings “for the protection of life and property and the enhancement of the national
economy.” This document outlines policies and technical standards that must be met in order to
implement operational code or numerical models in the production suite running on the Weather &
Climate Operational Supercomputing System (WCOSS) and maintained by NCEP Central Operation's
(NCO) Production Management Branch (PMB). The coding standards, examples of operational-quality
scripts and code, and best practices presented have been established to enable operational stability,
efficient troubleshooting and improved Environmental Equivalence (EE) between environments within
NCO and between NCO and developing organizations.

II. Workflow
In the production environment, all jobs are scheduled and submitted to the WCOSS resource manager,
Platform LSF, by ecFlow. EcFlow is a workflow manager developed and maintained by the European
Centre for Medium-Range Weather Forecasts (ECMWF) with an intuitive GUI that is used to handle
dependencies, schedule jobs, and monitor the production suite. Each job in ecFlow is associated with an
ecFlow script which acts like an LSF submission script, setting up the bsub parameters and much of the
execution environment and calling the J-job to execute the job. All jobs must be submitted to LSF via
bsub. It is at the ecFlow (NCO) or submission script level (development organizations) where certain
environment specific variables must be set (See Section III-A for further details).

The purpose of the J-Job is fourfold: to set up location (application/data directory) variables, to set up
temporal (date/cycle) variables, to initialize the data and working directories, and to call the ex-script.
The ex-script is the driver for the bulk of the application, including data-staging in the working directory,
setting up any model-specific variables, moving data to long-term storage, sending products off WCOSS
via DBNet and performing appropriate validation and error checking. It may call one or more utility
(ush) scripts. Additional discussion and examples of the expected workflow can be found in Appendix A.

All variables relating to the environment in which a job will run must be set, depending on the variable,
within the configuration script or J-Job. For example, to move a model from development to
production, it should only be necessary to change the exported variables in the ecFlow scripts /
configuration scripts or J-Jobs. Downstream scripts should always use the variables established in the J-
Job and should never alter them.

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 4 -

III. Standard Variables, Formats, and Utilities

A. Standard Environment Variables
A standard set of environment variables has been established to simplify the production workflow and
improve the troubleshooting process. They must be used wherever appropriate. In the production
environment, several of these variables are set in ecFlow. Developers should set these variables in a
separate wrapper or LSF submission script in order to keep the J-jobs as clean as possible. Table 1
delineates standard environment variables and where they are typically set in the production workflow.
If any of the below variables are not used in a given job then do not set them in the J-job.

Table 1: A list of the standard environment variables
Variable Name Description Where

Set
RUN_ENVIR Set to “nco” if running in NCO's production environment. Used to

distinguish between organizations.
ecFlow*

envir Set to “test” during the initial testing phase, “para” when running in
parallel (on a schedule), and “prod” in production.

ecFlow*

NWROOT Root directory for application, typically /nw$envir ecFlow*
NWROOTsystem Application root directory on alternate system (i.e. $NWROOTp1) ecFlow*
job Unique job name (unique per day and environment) ecFlow*
jobid Unique job identifier, typically $job.$$ (where $$ is an ID number) ecFlow*
jlogfile Log file for start time, end time, and error messages of all jobs ecFlow*
pgmout File where stdout of binary executables may be written J-job
NET Model name (first level of com directory structure) J-job
RUN Name of model run (third level of com directory structure) J-job
PDY Date in YYYYMMDD format J-job
PDYm1-7 Dates of previous seven days in YYYYMMDD format ($PDYm1 is

yesterday’s date, etc.)
J-job

PDYp1-7 Dates of next seven days in YYYYMMDD format ($PDYp1 is
tomorrow’s date, etc.)

J-job

cyc Cycle time in GMT, formatted HH ecFlow
cycle Cycle time in GMT, formatted tHHz J-job
DATAROOT Directory containing the working directory, often /tmpnwprd1 in

production
ecFlow*

DATA Location of the job working directory, typically
$DATAROOT/$jobid

J-job

HOMEmodel Application home directory, typically $NWROOT/model.vX.Y.Z ecFlow

ecFlow /
submission

script
J-job ex-script

ush
utility script(s)

compiled
executable(s)

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 5 -

USHmodel Location of the model’s ush files, typically $HOMEmodel/ush J-job
EXECmodel Location of the model’s exec files, typically $HOMEmodel/exec J-job
PARMmodel Location of the model’s parm files, typically $HOMEmodel/parm J-job
FIXmodel Location of the model’s fix files, typically $HOMEmodel/fix J-job
DCOMROOT dcom root directory ecFlow*
DCOM dcom directory for model input data J-job
COMROOT com root directory for input/output data on current system ecFlow*
COMROOTsystem com root directory for input/output data on alternate system (i.e.

$COMROOTp1)
ecFlow*

COMIN com directory for current model's input data, typically
$COMROOT/$NET/$envir/$RUN.$PDY

J-job

COMOUT com directory for current model's output data, typically
$COMROOT/$NET/$envir/$RUN.$PDY

J-job

COMINmodel com directory for incoming data from model model J-job
COMOUTmodel com directory for outgoing data for model model J-job
GESROOT nwges root directory for input/output guess fields on current

system
ecFlow*

GESROOTsystem nwges root directory for input/output guess fields on alternate
system (i.e. $GESROOTp1)

ecFlow*

GESIN nwges directory for input guess fields; typically $GESROOT/$envir J-job
GESOUT nwges directory for output guess fields; typically

$GESROOT/$envir
J-job

PCOMROOT pcom root directory for outgoing products with WMO headers on
current system

ecFlow*

PCOM pcom directory for outgoing products with WMO headers; typically
$PCOMROOT/$NET

J-job

DBNROOT Root directory for the data alerting utilities ecFlow*
SENDCOM Boolean† variable to control data copies to $COMOUT ecFlow*
SENDECF Boolean† variable used to control ecflow_client child commands ecFlow*
SENDDBN Boolean† variable used to control sending products off WCOSS ecFlow*
SENDDBN_NTC Boolean† variable used to control sending products with WMO

headers off WCOSS
ecFlow*

SENDWEB Boolean† variable used to control sending products to a web server,
often ncorzdm

ecFlow*

model_ver Current version of the model; where model is the model's directory
name (e.g. for $NWROOT/gfs.v12.0.0, gfs_ver=v12.0.0)

Version
file

shared_directory_ver Current version of the shared_directory (e.g. for the gsi shared code
in $NWROOT/gsi_shared.v5.0.1, gsi_shared_ver=v5.0.1)

Version
file

KEEPDATA Boolean† variable used to specify whether or not the working
directory should be deleted upon successful job completion.

ecFlow*

*variables set in envir.h ecFlow header (see Example 6); should be defined in development wrapper script
†boolean variables are set to “YES” or “NO” (all caps)

B. File Name Conventions
Standard file naming conventions should also be used. File names should not contain uppercase
characters or the date (the directory in which the file resides will contain the date). File names should
indicate the name of the model run, the cycle, the type of data the file contains, the resolution of the

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 6 -

data (if applicable), other data related elements, the three-digit forecast hour the data represents (if
applicable), and the file type. Please observe the following:

1. Use periods to separate categories and use underscores to separate words within the same
category

2. Use a “p” in describing a “point” within a grid resolution. Ex. 0.25 = 0p25
3. Include an “f” in front of the forecast hours
4. Pad forecast hours with zeros so that all files have the same number of digits
5. File names should be consistent across environments and application versions, so variables such

as $job, $envir, and $model_ver should not be used to define file names.

Filename format for files in com:

model.tHHz.var_info.f###.domain.format

Example filenames for files in com (HH is the cycle/hour):

rtofs_glo.tHHz.std.f180.west_conus.grib2
aqm.tHHz.8hr_o3.227.grib2
sref.tHHz.mean_3hrly.pgrb243.grib2

Filename format for files in pcom:

format.model.tHHz.awp_var_nfo.f###.domain

Example filenames for files in pcom:

grib2.aqm.tHHz.08hr_o3.227
grib2.akrtma.tHHz.2dvaranl.198
grib2.sref.tHHz.spread.212

C. Production Utilities
It is imperative that all production code and scripts broadly employ error checking to catch and recover
from errors as quickly as possible. The context of the error should be communicated as descriptively as
possible and prefaced with “WARNING:” or “FATAL ERROR:”. Failures should not be allowed to
propagate downstream of the point where the problem can first be detected. The following utilities
should be used to assist in accomplishing these tasks. The below utilities are accessible with the
prod_util module. This module will prepend the directory containing all production modules to your
environment’s PATH variable and define other useful environment variables. See Table 5 (in Appendix B)
for variables and their descriptions. The module must be loaded in all production jobs by calling
“module load prod_util.” See Appendix A for examples of these utilities in use.

prep_step
prep_step unsets the FORT## variables used to pass unit assignments to Fortran executables. Since
there may be multiple Fortran programs running in a job, these variables must be reset before each
program execution.

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 7 -

startmsg
startmsg posts the start time of a program to $jlogfile

postmsg
postmsg writes a message to a log file. The first argument is the log file name and the second is the
message. In general, $jlogfile should be specified as the log file.

err_chk
err_chk is used to check and handle the $err variable following the execution of a program. If
$err=0, the end time of the program is posted to the log file and job execution continues. If $err is
non-zero, the contents of the file errfile and $pgmout are written to the output file, the time of the
error is logged, and the job is aborted.

err_exit
err_exit will write the contents of $pgmout to the output file, write an error message with the time of
the error, and abort the job. It accepts an error string as input to which it will prepend “FATAL ERROR.”

cpreq
cpreq has the same usage as the standard cp command. It is used to copy files that are essential to the
application. If the copy is unsuccessful then a FATAL ERROR will be posted to $jlogfile and the
output file and the job will abort immediately.

cpfs
cpfs has essentially the same usage as the standard cp command with the limitation that it may only
copy one file at a time (no globbing). It is used to ensure downstream applications will not attempt to
copy or read a partial file. It is most useful for copies across file systems or for very large files.

cpfs $COMIN/$file $new_file

will execute the following:
cpreq $COMIN/$file $new_file.cptmp
$FSYNC $new_file.cptmp
mv $new_file.cptmp $new_file

D. Date Utilities
The following utilities are used to manage dates in the production suite. They must be used wherever
current dates are employed to enable proper scheduling and ensure that all jobs work as expected when
crossing over to a new year. As with above, access to the below date utilities is done by loading the
prod_util module.

finddate.sh
Given a date, finddate.sh will return a date (in YYYYMMDD format) a specified number of days before
or after the given date. It may also provide a sequence of dates leading to the specified number of days
before or after the given date. Example 1 shows how to use finddate.sh. This utility does not work
for usage spanning more than two calendar months!

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 8 -

Example 1: Using finddate.sh
Script
#!/bin/sh
module load prod_util
PDY=20150101

Single date example
ten_days_ago=$(finddate.sh $PDY d-10)
ten_days_ahead=$(finddate.sh $PDY d+10)

Sequence example
last_four_days=$(finddate.sh $PDY s-4)
next_four_days=$(finddate.sh $PDY s+4)

echo "Today's date is $PDY"
echo "The date ten days ago was $ten_days_ago"
echo "The date in ten days will be $ten_days_ahead"
echo "The last four days were $last_four_days"
echo "The next four days are $next_four_days"

Output
Today's date is 20150101
The date ten days ago was 20141222
The date in ten days will be 20150111
The last four days were 20141231 20141230 20141229 20141228
The next four days are 20150102 20150103 20150104 20150105

ndate
ndate is accessible by the variable $NDATE once the prod_util module has been loaded. ndate is a
date utility that will return a date in YYYYMMDDHH format. Given no arguments, it will return the
current date/hour. ndate takes up to two arguments, namely fhour and idate:

ndate [fhour [idate]]

fhour is a forecast hour (may be negative) and defaults to zero. idate is the initial date in
YYYYMMDDHH format and defaults to the current date. Example 2 shows how to use ndate.

Example 2: Using ndate
Script
#!/bin/sh
module load prod_util

PDYHH=$($NDATE)

Single date example
ten_days_ago=$($NDATE -240 $PDYHH)
ten_days_ahead=$($NDATE 240 $PDYHH)

cycle examples
next_cycle=$($NDATE 06 $PDYHH)
prev_cycle=$($NDATE -06 $PDYHH)

echo "Today's date and cycle is $PDYHH"
echo "The date ten days ago was $ten_days_ago"
echo "The date in ten days will be $ten_days_ahead"
echo "Six hours ahead is $next_cycle"
echo "Six hours previous is $prev_cycle"

Output
Today's date and cycle is 2014112615

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 9 -

The date ten days ago was 2014111615
The date in ten days will be 2014120615
Six hours ahead is 2014112621
Six hours previous is 2014112609

setpdy.sh
setpdy.sh creates a file PDY that is sourced to export the standard date variables PDYm1-7, PDY, and
PDYp1-7. The variable cycle must be set (in ‘tHHz’ format) prior to execution. The default date is the
current day’s date as defined in the file /com/date/$cycle, but it can be overridden by setting the
variable PDY prior to execution. The date files in /com/date are set by the prod_setup job run at 11:30
UTC and 23:30 UTC. At 23:30, the date files for cycles 00–11 are incremented to the next day. At 11:30,
the date files for cycles 12–23 are likewise advanced. Therefore, if you were to set cycle to t12z and
run setpdy.sh between 00:00 and 11:30, you would get a PDY file centered on the previous day’s
date. Example 3 shows how to use setpdy.sh.

Example 3: Using setpdy.sh (assuming current date is 20150101)
Script
#!/bin/sh
module load prod_util
export cycle=t12z

setpdy.sh
. PDY

echo "Yesterday's date was $PDYm1"

Contents of file PDY
export PDYm7=20141225
export PDYm6=20141226
export PDYm5=20141227
export PDYm4=20141228
export PDYm3=20141229
export PDYm2=20141230
export PDYm1=20141231
export PDY=20150101
export PDYp1=20150102
export PDYp2=20150103
export PDYp3=20150104
export PDYp4=20150105
export PDYp5=20150106
export PDYp6=20150107
export PDYp7=20150108

Output
Yesterday's date was 20141231

E. GRIB Utilities
GRIB is a data format commonly used across the production model suite at NCEP and in Numerical
Weather Prediction worldwide. NCO supports several utilities responsible for manipulating GRIB data.
These utilities are accessible in production via the grib_util module. The module will define
numerous environment variables. See Table 5 (in Appendix B) for all variable definitions and descriptions
of each utility. The module must be loaded at the J-job level of all jobs using GRIB utilities.

module load grib_util

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 10 -

IV. Standards

A. General Application Standards
Diagnosing failures quickly is a necessary component of maintaining a suite of products that boasts a
greater than 99% on-time delivery rate. To that end, all code should be scrutinized for both stability
and ease of troubleshooting. It is not practical to discuss all of the steps that can or should be taken
to write operational quality code, but here are some things that should be considered:

i. Notification of use of backup data
 For scripts that have a secondary data source to be used when the primary data is not available,

the script should include a message that indicates the primary data is not available and backup
data is being used. If continued use of backup data will result in a degraded product, the
developer should work with NCO’s SPA team to include code in the script to alert (e.g. e-mail)
the appropriate parties when primary data is unavailable. Note that e-mail notifications can
only be sent from jobs running on the prod_serv nodes.

ii. Descriptive error messages
Fatal errors should print a descriptive message beginning with “FATAL ERROR:”. Warnings or
non-fatal error messages should be prefaced with “WARNING:”. As with executable code, error
messages in scripts should be written so that if an issue arises, the context of that error or
failure is communicated as early and as clearly as possible.

iii. Appropriate modes of failure
An executable should not terminate abnormally with a segmentation or memory fault for errors
that are discoverable/trappable. For example, lack of input data should be handled either in the
script before the executable runs, or by the executable if checking in the script is not practical.

iv. Minimize the time it takes to re-run a failed job
In places where restarts can be applied to save time when recovering from a failure, they
should. Long running jobs that have multiple executable calls might be a good candidate to
break into two smaller jobs so that if a failure occurs, only the problem part need be re-run and
the time to completion is shorter.

v. No background processing
LSF loses control of processes when they are put in the background. Therefore, background
processing must be avoided.

vi. No external-pointing symlinks
Symbolic links to resources outside of the application directory (i.e. links to absolute paths) are
not allowed in application directories. When external resources are required, external paths
should be defined as variables in the J-job and used wherever the external resource is needed.

vii. Working directories
Working directories should contain a unique identifier (pid) unless there is an application need
to share the directory across multiple jobs (e.g. a forecast job writing output that is needed by a
post job running in parallel). Working directories should be removed upon successful
completion of the run. All data that is needed for longer than one cycle should be copied to
$COMOUT, $GESOUT or $PCOM.

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 11 -

viii. Data of opportunity
It is acceptable to use data from a server or other source that is not supported 24/7. However,
the application can not fail when this data is missing. Appropriate notification of use of backup
data should be made (see above) and the job should continue with other operationally
supported input data.

Source code and scripts should be annotated with information that may help staff remedy a
problem if something goes awry. In some cases, too much information is as bad as none at all. We
ask that you use your best judgment to include information that will be of the most help in
troubleshooting potential issues. Example 4 shows a suggested format for a documentation block
(DOCBLOCK).

Example 4: suggested DOCBLOCK template
[#,!] Program Name:
[#,!] Author(s)/Contact(s):
[#,!] Abstract:
[#,!] History Log:
[#,!] <brief list of changes to this source file>
[#,!]
[#,!] Usage:
[#,!] Parameters: <Specify typical arguments passed>
[#,!] Input Files:
[#,!] <list file names and briefly describe the data they include>
[#,!] Output Files:
[#,!] <list file names and briefly describe the information they include>
[#,!]
[#,!] Condition codes:
[#,!] < list exit condition or error codes returned >
[#,!] If appropriate, descriptive troubleshooting instructions or
[#,!] likely causes for failures could be mentioned here with the
[#,!] appropriate error code
[#,!]
[#,!] User controllable options: <if applicable>

 * Use appropriate comment indicator (#, !) where appropriate.

B. Compiled Code (C or Fortran source)
1. Compiled code must be written in either C/C++ or Fortran.
2. C and Fortran compilers must be the default Intel version on WCOSS or higher (icc and ifort).
3. All libraries must be approved for production use. Makefiles should include compilers and

libraries using variables defined in the associated module and described in README, for
example:

command line (README):
 module load w3nco/v2.03
 module load ics/v15.0.1

makefile:
 LIBS = ${W3NCO_LIB4}
 ndate: ndate.f
 ifort –o ndate ndate.f $(LIBS)

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 12 -

 Modulefiles should be used for more complex builds. See Example 9 in Appendix A for an
example modulefile.

4. In order for certain errors to be trapped early in the build process, it is recommended to add the
check_prereqs target to all makefiles:

 check_prereqs:
 /nwprod/spa_util/check_libs.bash $(LIBS)
 /nwprod/spa_util/check_incs.bash $(INC)

5. Do not specify absolute paths to executables, libraries, or any other products inside the
makefile. With few exceptions, paths should be set by a module.

6. Code must be able to compile without any warnings.
7. Errors must be caught as early as possible and the context of the error should be communicated

clearly. Failures should not be allowed to propagate past the point where the problem is first
detectable.

8. Fortran Logical Unit Number (LUN) Assignments:

In code that uses static units, and where the flow of operation is simple, please make an effort
to use a standard or consistent assignment strategy. We understand that in some situations,
source code is used by a community of scientists and it can be impractical to assign specific unit
numbers to files, but it is useful to have a consistent standard for all input and output wherever
possible to provide a means to quickly understand how data is being used.

• Units 11–49 for all input files
• Units 51–79 for all output files
• Units 80–94 for all temporary work files, written and used within in the same program

Except for work files, the same unit number should NEVER be used for both input and output by
the same program. Users should associate filenames to unit numbers in the script prior to
program execution. On the WCOSS, users should use the environment variables FORTk, where k
is a two-digit number. Filenames should never be hardcoded in the source.

Example:
export FORT11=inputfile.tbl
export FORT60=outputfile.grb

C. Interpreted Code (bash, ksh or perl scripts)
Each “job” is associated with a single J-job, located in the jobs subdirectory. The J-job sets up the
environment and calls an ex-script script located in the scripts subdirectory. All J-jobs should follow the
naming convention JAAAAA: all capital letters beginning with the letter ‘J’ with no extension. J-jobs
must use Bash (/bin/bash or /bin/sh, the latter invokes Bash in POSIX mode on WCOSS) or Korn Shell
(/bin/ksh). Ex-scripts and utility scripts may be written in Bash, Korn shell, Perl, or Python. Ex-scripts
should follow the naming convention exaaaaa.sh: all lowercase beginning with the letters ‘ex’ and
ending with the appropriate extension (‘.sh’, ‘.pl’, ‘.py’). Any sub-scripts to the ex-script will be located
in the ush subdirectory, be named in all lowercase letters not beginning with the letters ‘ex,’ and should
end with the appropriate extension. Underscores are permitted in all file names.

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 13 -

Please also observe the following points:

1. Enable debug logging and mark subsequent variable definitions for export at the top of each J-
job:

export PS4=' $SECONDS + '
set -xa

2. Utilize standard environment variables and utilities (See Section III-A).
3. Each block of copies from the scratch directory to com, nwges or pcom must be wrapped with

logic testing if the variable $SENDCOM is set to “YES”. Never write to dcom!
4. Each block of dbnet alerts must be wrapped with logic testing whether the variable $SENDDBN

or $SENDDBN_NTC, as applicable, is set to “YES”.
5. Each execution of a C or Fortran code must be wrapped with the production utilities

prep_step, startmsg and err_chk.
6. Each execution should redirect standard out to $pgmout and standard error to errfile:

 $EXECmodel/$pgm >> $pgmout 2> errfile

7. Production utilizes a centralized cleanup of directories in /com and /nwges. Production scripts
should not remove directories at the /com/$NET/$envir/$RUN.$PDY level.

8. Any output written to /pcom should be named in such a way that the files are overwritten with
each subsequent run from day to day.

9. Remove all references to developer work areas and all development tools (benchmarking, etc.)
before submitting to PMB.

10. If your application should continue if a preceding step fails, it should be documented in a
comment in the script just before (or after) the relevant part is called and a descriptive
“WARNING:” message printed to stdout and posted to the $jlogfile via postmsg.

Reference Appendix A for examples of an ecFlow submit script, environment configuration script, J-job,
ex-script, modulefile and makefile with notes explaining the purpose of different sections.

V. Dataflow
Distributed Brokered Networking (DBNet) is used to disseminate products operationally from
WCOSS. DBNet is a series of server/client daemons that are controlled by table and key relationships.
To disseminate a product, jobs running on WCOSS make a call to the dbn_alert executable which makes
the DBNet software aware of the new product. Then, based on entries in several different tables, the
product can be sent to one or more external servers. The NCO Dataflow Team is responsible
for maintaining DBNet and needs to be coordinated with in the event any new alert call is added or if an
existing alert is changed. All DBNet alerts must be wrapped in a check for $SENDDBN (or
$SENDDBN_NTC) equal to “YES”.

$DBNROOT/bin/dbn_alert MODEL PMB_GB2 $job $COMOUT/$outputfile

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 14 -

Field Description
Type [MODEL] Generic data type
Subtype [PMB_GB2] Specific data type under the generic type
Job Name [$job] Name of the process that alerted the file, this is only

used in the log output. It can be helpful when trying to
identify the job that called dbn_alert

File [$COMOUT/$outputfile] File to be alerted; must include the full path.

VI. Code Delivery and Vertical Structure
All components of an application to be run in the NCO production environment must be delivered to
PMB's Senior Production Analysts (SPA) via subversion. When modifying an application that is already in
production, always begin with the most recent production version at
https://svnwcoss.ncep.noaa.gov/MODEL/tags/.

A. Source Code Compilation (C or Fortran)
1. The directory structure, compilation scripts, makefiles, and documentation for building should

be understandable to someone unfamiliar with the specifics of your model.
2. Do not deliver any pre-built executables or libraries to PMB. It is the SPA's responsibility to build

all executables and libraries before running an application on WCOSS.
3. If more than one executable is to be built, divide the source files into sub-directories according

to the executable they produce. The name of each source directory should be the name of the
executable it produces plus the appropriate extension (.cd or .fd for C or Fortran code,
respectively). In this way, a simple "build all" script can be written to batch process the building
of all executables for a given application.

4. Any application containing source code should be delivered with a module file, which will be
used to set up the environment to build all executables within the delivered package. A
modulefile will allow PMB to keep track of the compiler, library versions, and any other external
files used to compile the application. An example modulefile can be found in Example 9 of
Appendix A. Creating symbolic links to external resources (i.e. to absolute paths) is not allowed.

5. It is preferable for each source code directory to have a makefile that does everything needed to
build one executable. For example, global_fcst.fd would contain Fortran code and a makefile to
produce the global_fcst executable. An example makefile can be found in Example 10 of
Appendix A .

6. Use a readme file in the source directory to explain the build process, especially if it requires any
interaction or if it is non-standard in any way. This includes information on any situations where
a makefile produces more than one executable. An explanation of how to build in the same
directory as the source will eliminate confusion and reduce errors if it becomes necessary to
rebuild the executable to resolve a production failure or other emergency situation.

https://svnwcoss.ncep.noaa.gov/MODEL/trunk/

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 15 -

B. Directory Structures
All components of an application to be implemented into the production environment are required to
be in vertical structure, where, with the exception of system or standard production libraries and input
data, all of the files required to completely build and run the jobs are contained in an application-
specific directory. The application directory must contain all J-jobs and ex-scripts specific to a given
model and should be named with the following format; model.vX.Y.Z (e.g. gfs.v12.0.1). Files should be
organized into sub-directories according to their type (see Table 2). If there exists code, scripts or other
files shared between multiple models then they should reside in a shared directory under /nwprod with
the following naming convention: model/function_shared.vX.Y.Z (e.g. gsi_shared.v5.0.0). The shared
directory should never contain a jobs sub-directory.

Table 2: Application Sub-directories
Subdirectory Description
doc release notes or other documentation
jobs J-Jobs
scripts ex-scripts
ush utility scripts (ush-scripts)
sorc source code
exec binary executables
parm parameter files or other static input data
fix fixed fields, tables or other static input data
lib model-specific libraries
ecf ecFlow / submission scripts and ecFlow definition

files (developers not responsible for this directory)
gempak all gempak related files

Table 3 lists the primary data and application directories used within the WCOSS NCO production
environment. Data from external sources is stored in dcom and model output is stored in com. The
output folder of the com directory contains job stdout and stderr. Several forecast models produce
model guess fields to be used as input for subsequent model runs. This spin-up data is stored in nwges.
World Meteorological Organization (WMO) headed output products sent to the Telecommunication
Operations Center (TOC) and onward to the Satellite Broadcast Network (SBN) are stored in pcom. Pcom
data must be date-independent so the data stored will overwritten each day. Table 4 (below), Table 6,
Table 7, and Table 8 (in Appendix B) show the structures of com, nwges, pcom and dcom directories,
respectively.

Table 3: WCOSS Directory Structure
Directory Description
/nwprod applications in the production suite
/nwtest applications in the test suite (unscheduled)
/nwpara applications in the parallel suite (scheduled)
/nwbkup backup of production applications (/nwprod)
/nwges model guess fields (spin-up data)
/com data and application output, including outgoing products

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 16 -

/dcom incoming data (retrieved from outside WCOSS)
/pcom outgoing products with WMO headers
/tmpnwprd* temporary working directories for running jobs (separate

directory for each filesystem)

Table 4: Structure of /com Directory
Subdirectory Description
NET/prod/RUN.YYYYMMDD production model output for a day
NET/test/RUN.YYYYMMDD test model output for a day
NET/para/RUN.YYYYMMDD parallel model output for a day
output/prod/YYYYMMDD production job stdout/stderror for a day
output/test/YYYYMMDD test job stdout/stderror for a day
output/para/YYYYMMDD parallel job stdout/stderror for a day
output/transfer/YYYYMMDD transfer job stdout/stderror for a day
nawips/envir/RUN.YYYYMMDD NAWIPS model output for a day
logs log files

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 17 -

Appendix A: Workflow Examples
All examples are for job jpmb_forecast. Model name is nco and type of model run is pmb.

Example 5: ecFlow script jpmb_forecast.ecf
#BSUB –J %E%pmb_forecast_%CYC%
#BSUB –o /com/output/%ENVIR%/today/pmb_forecast_%CYC%.o%J
#BSUB -P %PROJ%
#BSUB -q %QUEUE%
#BSUB –L /bin/sh
#BSUB –W 00:30
#BSUB –cwd /tmpnwprd
#BSUB –x
#BSUB –n 8
#BSUB –R span[ptile=8]
#BSUB –R affinity[core]
#BSUB -R rusage[mem=5000]
#BSUB -a poe

%include <head.h>
%include <envir.h>

module load grib_util

export cyc=%CYC%
export model=pmb

export MP_LABELIO=YES
export MP_USE_BULK_XFER=YES
export MP_PULSE=500

VERSION_FILE=${NWROOT:?}/versions/$model.ver
if [-f $VERSION_FILE]; then
 . $VERSION_FILE
else
 ecflow_client --abort="$VERSION_FILE does not exist"
 exit
fi

${NWROOT}/${model}.${pmb_ver}/jobs/JPMB_FORECAST

%include <tail.h>
%manual

%end

job name
stdout/stderr
project identifier
LSF queue name
login shell
wall clock
initial working directory
use exclusive nodes
number of tasks
number of tasks per node
affinitize to 1 core
use 5000MB of memory
use poe

ecFlow headers
setup NCO environment

load grib utility module

set the cycle
base name of model directory

define all poe variables here, if
applicable

source model version file

send ecFlow abort signal if the
version file does not exist

call J-Job

ecFlow footer
manual section that should
include a brief summary of
the job’s purpose and
troubleshooting tips

Example 6: Environment configuration script (ecFlow envir.h)*
 * An example configuration script that may differ from the actual envir.h used in production

export job=${job:-$LSB_JOBNAME}
export jobid=${jobid:-$job.$LSB_JID}
export RUN_ENVIR=${RUN_ENVIR:-nco}
export envir=%ENVIR%

module load prod_util

export DCOMROOT=${DCOMROOT:-/dcom/us007003}
export COMROOT=${COMROOT:-/com}
export GESROOT=${GESROOT:-/nwges}

setup run environment for
$job

load prod utility module

setup data root directories

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 18 -

case $envir in
 prod)
 export jlogfile=${jlogfile:-
 ${COMROOT}/logs/jlogfiles/jlogfile.${jobid}}
 export DATAROOT=${DATAROOT:-/tmpnwprd1}
 export DBNROOT=/iodprod/dbnet_siphon
 ;;
 eval)
 export envir=para
 export jlogfile=${jlogfile:-
 ${COMROOT}/logs/${envir}/jlogfile}
 export DATAROOT=${DATAROOT:-/tmpnwprd2}
 export DBNROOT=/nwprod/spa_util/para_dbn
 SENDDBN_NTC=NO
 ;;
 para|test)
 export jlogfile=${jlogfile:-
 ${COMROOT}/logs/${envir}/jlogfile}
 export DATAROOT=${DATAROOT:-/tmpnwprd2}
 export DBNROOT=/nwprod/spa_util/fakedbn
 KEEPDATA=YES
 ;;
esac

export NWROOT=${NWROOT:-/nw${envir}}
export PCOMROOT=${PCOMROOT:-/pcom/${envir}}
export SENDDBN=${SENDDBN:-YES}
export SENDDBN_NTC=${SENDDBN_NTC:-YES}
export SENDWEB=${SENDWEB:-YES}
export SENDECF=${SENDECF:-YES}
export SENDCOM=${SENDCOM:-YES}
export KEEPDATA=${KEEPDATA:-NO}

setup variables specific to

the NCO production
environment

setup variables specific to

the NCO parallel
evaluation environment

setup variables specific to

the NCO parallel and test
environments

setup environment

variables common to all
NCO environments

clean up $DATA

Example 7: J-job JPMB_FORECAST
All variables defined in the J-job should default to NCO production environment

#!/bin/sh

date
export PS4=' $SECONDS + '
set -x

export DATA=${DATA:-${DATAROOT:?}/$jobid}
mkdir -p $DATA
cd $DATA

export cycle=${cycle:-t${cyc}z}
setpdy.sh
. PDY

export SENDCOM=${SENDCOM:-YES}
export SENDDBN=${SENDDBN:-YES}
export SENDECF=${SENDECF:-YES}

export HOMEpmb=${HOMEpmb:-${NWROOT:?}/pmb.$pmb_ver}
export USHpmb=$HOMEpmb/ush
export EXECpmb=$HOMEpmb/exec
export PARMpmb=$HOMEpmb/parm
export FIXpmb=$HOMEpmb/fix

print starting time
prepend time to output
enable verbose logging

create temporary working
directory

set up temporal variables,
including PDY

send output to COM
alert output through DBNet
send signals to ecFlow

parent directory and all sub-
directories for current
model

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 19 -

export HOMEnco=${HOMEnco:-${NWROOT}/nco_shared.$nco_shared_ver}
export EXECnco=$HOMEnco/exec

export NET=${NET:-nco}
export RUN=${RUN:-pmb}

export COMINgfs=${COMINgfs:-${COMROOT}/gfs/prod/gfs.$PDY}
export getges_envir=${getges_envir:-prod}
export GESIN=${GESIN:-${GESROOT}/prod}
export COMIN=${COMIN:-${COMROOT}/${NET}/${envir}/$RUN.$PDY}

export COMOUT=${COMOUT:-${COMROOT}/${NET}/${envir}/$RUN.$PDY}
export COMOUTarch=${COMOUTarch:-${COMROOT}/arch/${envir}/syndat}
export PCOM=${PCOM:-${PCOMROOT}/$NET}
export GESOUT=${GESOUT:-${GESROOT}/$envir}

if ["$SENDCOM" = YES]; then
 mkdir –p $COMOUT $PCOM $GESOUT
fi

export pgmout=OUTPUT.$$

env

$HOMEpmb/scripts/expmb_forecast.sh
export err=$?; err_chk

msg="JOB $job HAS COMPLETED NORMALLY."
postmsg $jlogfile "$msg"

if [-e "$pgmout"]; then
 cat $pgmout
fi

if ["$KEEPDATA" != YES]; then
 rm –rf $DATA
fi

date

provide access to nco
shared executables

variables used in com
directory organization

locations of incoming data

locations of outgoing data

create output directories

output for executables

print current environment

execute ex-script
error checking

post successful completion
message

print exec output

remove temporary working
directory

print ending time

Example 8: ex-script expmb_forecast.sh
#!/bin/sh

Program Name: pmb_forecast
Author(s)/Contact(s): First Last
Abstract: Driver script for pmb forecast
History Log:
5/2014: Added error checking
8/2014: Modified for WCOSS

Usage:
Parameters: None
Input Files:
pmb.tHHz.anl
Output Files:
pmb.tHHz.fFFF.grib2

Condition codes:
99 - Missing input file

User controllable options: None

ex-script DOCBLOCK

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 20 -

set -x

cpreq $COMIN/inputfile inputfile

pgm=pmb_forecast

. prep_step
export FORT11=$FIXpmb/inputfile.tbl
export FORT12=inputfile
export FORT60=outputfile.grib2

startmsg
$EXECmodel/$pgm >> $pgmout 2> errfile
export err=$?; err_chk

if [-s outputfile.grib2]; then
 if ["$SENDCOM" = YES]; then
 cpfs outputfile.grib2 $COMOUT/outputfile.grib2
 if ["$SENDDBN" = YES]; then
 $DBNROOT/bin/dbn_alert MODEL PMB_FCST \
 $job $COMOUT/outputfile.grib2
 fi
 fi
else
 err_exit "outputfile.grib2 was not generated"
fi

pgm=tocgrib2
. prep_step
export FORT11=outputfile.grib2
export FORT51=grib2.t${cyc}.z.pmb.f000

startmsg
$TOCGRIB2 <$PARMpmb/grib2_awp_pmbf000 >>$pgmout 2>errfile
if [$? –ne 0]; then
 msg="WARNING: WMO header not added to $FORT11"
 postmsg $jlogfile "$msg"
 echo "$msg"
fi

enable verbose logging

copy essential input files into
working directory

name of the binary executable

clear Fortran unit assignments
set Fortran unit assignments

log program start
execute program
error checking

check for required output

copy output file to output
directory

alert output file

terminate the job if the
expected output cannot be
found

Setup for tocgrib2 exec

define input file
define output file

add WMO header to file
error checking

Example 9: modulefile PMB
This example represents a model’s modulefile. It should be loaded before compiling the source code for
the application. A similar modulefile can be created for libraries.

#%Module###

First.Last@noaa.gov
ORGANIZATION
PMB-FCST v1.0.0

proc ModulesHelp { } {
 puts stderr "Set environment variables for PMB-FCST"
 puts stderr "This module initializes the users"
 puts stderr "environment to build the PMB model at NCEP"
}

module-whatis "PMB-FCST whatis description"

set ver v1.0.0
setenv COMP ifort

module DOCBLOCK

module help

module description

set version and
compiler variables

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 21 -

Known conflicts
conflict ics/12.1
conflict w3nco/v2.0.5
conflict w3nco/v2.0.4

#Loading intel suite
module load ics/15.0.1

Loding ncep libs modules
module load EnvVars/1.0.0
module load HDF5/1.8.9/serial
module load NetCDF/3.6.3
module load bacio/v2.0.1
module load w3nco/v2.0.6
module load jasper/v1.900.1
module load png/v1.2.44
module load z/v1.2.6

establish known
conflicts

load ics and all ncep
library modules used
in the build process

Example 10: pmb_forecast.fd/makefile

Makefile for xxx
Use:
make - build the executable
make clean - start with a clean slate

Tunable parameters:
FC Name of the Fortran compiling system to use
LDFLAGS Options of the loader
FFLAGS Options of the compiler
DEBUG Options of the compiler included for debugging
LIBS List of libraries
CMD Name of the executable

FC = ${COMP} # Use Intel FORTRAN Compiler, ifort
LDFLAGS = -O -convert big_endian
BINDIR = ../../exec
INC = ${G2_INC4}
LIBS = ${G2_LIB4} ${W3NCO_LIB4} ${BACIO_LIB4} ${JASPER_LIB}
${PNG_LIB} ${Z_LIB}
CMD = pmb_forecast
DEBUG =
FFLAGS = -O3 -I $(INC) $(DEBUG)

Lines from here down should not need to be changed. They are
the actual rules which make uses to build CMD.

all: check_prereqs $(CMD)

$(CMD): $(OBJS)
 $(FC) $(LDFLAGS) -o $(@) $(OBJS) $(LIBS)

clean:
 -rm -f $(OBJS) *.mod $(CMD)

install:
 -mv $(CMD) ${BINDIR}/

check_prereqs:
 /nwprod/spa_util/check_libs.bash $(LIBS)
 /nwprod/spa_util/check_incs.bash $(INC)

Makefile DOCBLOCK
containing
instructions and use

name of compiler
options of the loader
executable location
include files
libraries

executable name
debug options
compiler options

check perquisite
libraries and includes

NCO WCOSS Implementation Standards v10.0 Last updated May 13, 2015

 - 22 -

Appendix B: Variables and Directory Structure Tables

Table 5: Production variable definitions accessible by modules
Variable exec Description
CNVGRIB cnvgrib Converts between GRIB1 and GRIB2
COPYGB copygb Copies all or part of GRIB1 file to another GRIB1 file
COPYGB2 copygb2 Copies all or part of GRIB2 file to another GRIB2 file
DEGRIB2 degrib2 Creates inventory of GRIB2 file
GRB2INDEX grb2index Creates index file from GRIB2 file
GRBINDEX grbindex Creates index file from GRIB1 file
GRIB2GRIB grib2grib Extracts GRIB records from a GRIB file made by gribawp1
TOCGRIB tocgrib Adds WMO header in front of each GRIB1 field
TOCGRIB2 tocgrib2 Adds WMO header in front of each GRIB2 field
TOCGRIB2SUPER tocgrib2super Adds WMO super header and time stamp to GRIB2 fields
WGRIB wgrib Creates inventory and decodes GRIB1 files
WGRIB2 wgrib2 Creates inventory and decodes GRIB2 files
NDATE ndate Date utility
MDATE mdate Date utility
NHOUR nhour Date utility
FSYNC fsync_file Synchronize file across GPFS

Table 6: Structure of /nwges Directory
Subdirectory Description
prod/model.YYYYMMDD production spin-up data for model
test/model.YYYYMMDD test spin-up data
para/model.YYYYMMDD parallel spin-up data

Table 7: Structure of /pcom Directory
Subdirectory Description
prod/model production WMO headed output products
test/model test WMO headed output products
para/model parallel WMO headed output products

Table 8: Structure of /dcom Directory
Subdirectory Description
us007003/YYYYMMDD incoming data for one day
us007003/YYYYMM Incoming data for one month (select types only)
us007003/YYYYMMDD/bTTT/xxSSS data tanks

TTT and SSS correspond to the 3-digit BUFR data category type and sub-type, respectively

	NCEP Central Operations
	WCOSS Implementation Standards
	I. Introduction
	II. Workflow
	III. Standard Variables, Formats, and Utilities
	A. Standard Environment Variables
	Table 1: A list of the standard environment variables

	B. File Name Conventions
	C. Production Utilities
	prep_step
	startmsg
	postmsg
	err_chk
	err_exit
	cpreq
	cpfs

	D. Date Utilities
	finddate.sh
	Example 1: Using finddate.sh
	ndate
	Example 2: Using ndate
	setpdy.sh
	Example 3: Using setpdy.sh (assuming current date is 20150101)

	E. GRIB Utilities

	IV. Standards
	A. General Application Standards
	Example 4: suggested DOCBLOCK template

	B. Compiled Code (C or Fortran source)
	C. Interpreted Code (bash, ksh or perl scripts)

	V. Dataflow
	VI. Code Delivery and Vertical Structure
	A. Source Code Compilation (C or Fortran)
	B. Directory Structures
	Table 2: Application Sub-directories
	Table 3: WCOSS Directory Structure
	Table 4: Structure of /com Directory

	Appendix A: Workflow Examples
	Example 5: ecFlow script jpmb_forecast.ecf
	Example 6: Environment configuration script (ecFlow envir.h)*
	Example 7: J-job JPMB_FORECAST
	Example 8: ex-script expmb_forecast.sh
	Example 9: modulefile PMB
	Example 10: pmb_forecast.fd/makefile

	Appendix B: Variables and Directory Structure Tables
	Table 5: Production variable definitions accessible by modules
	Table 6: Structure of /nwges Directory
	Table 7: Structure of /pcom Directory
	Table 8: Structure of /dcom Directory

